Skip to content

API Reference

Core API Functions

salientsdk.forecast_timeseries(loc, date='-default', debias=False, field='anom', format='nc', model='blend', reference_clim='salient', timescale='all', variable='temp', version='-default', weights=None, destination='-default', force=False, session=None, apikey=None, verify=None, verbose=False, strict=True, **kwargs)

Get time series of S2S meteorological forecasts.

This function is a convenience wrapper to the Salient API.

Parameters:

Name Type Description Default
loc Location

The location to query

required
date str | list[str]

The date the forecast was generated. Defaults to find the most recent forecast. Can be a specific date in the format YYYY-MM-DD. May be a vector of dates or a comma separated list of dates, in which case the function will return a DataFrame.

'-default'
debias bool

If True, debias the data to local observations. Valid only for model = blend. detail

False
field str

The field to query, defaults to anom which is an anomaly value from climatology. Also available: vals, which will return absolute values without regard to climatology.

'anom'
format str

The file format of the response. Defaults to nc which returns a multivariate NetCDF file. Also available: csv which returns a CSV file.

'nc'
model str | list[str]

The model to query. Defaults to blend, which is the Salient blended forecast. May be a list of strings or comma-separated string, which downloads multiple models.

'blend'
reference_clim str

Reference climatology for calculating anomalies. Ignored when field=vals since there are no anomalies to calculate. Defaults to salient, which is Salient's proprietary climatology.

'salient'
timescale str

Forecast look-ahead. - sub-seasonal is 1-5 weeks. Will return a coordinate forecast_date_weekly and a data variable anom_weekly or vals_weekly. - seasonal is 1-3 months. Will return a coordinate forecast_date_monthly and a data variable anom_monthly or vals_monthly. - long-range is 1-4 quarters. Will return a coordinate forecast_date_quarterly and a data variable anom_quarterly or vals_quarterly. - all (default) will include sub-seasonal, seasonal, and long-range timescales

'all'
variable str

The variable to query, defaults to temp To request multiple variables, separate them with a comma temp,precip or use a list. This will download one file per variable See the Data Fields documentation for a full list of available historical variables.

'temp'
version str

The model version of the Salient blend forecast. To request multiple versions, provide a list or comma-separated string. -default calls get_default_version().

'-default'
weights str

Aggregation mechanism if using a shapefile or location_file. Currently supported options are 'population' for a population-weighed mean and 'equal' for an arithmetic mean. Defaults to None, which will not perform any weighting or aggregation.

None
destination str

The destination directory for downloaded files. -default uses get_file_destination()

'-default'
force bool

If False (default), don't download the data if it already exists

False
session Session

The session object to use for the request

None
apikey str | None

The API key to use for the request. In most cases, this is not needed if a session is provided.

None
verify bool

If True (default), verify the SSL certificate. Defaults to use the value returned by get_verify_ssl()

None
verbose bool

If True (default False) print status messages

False
strict bool

If True (default) error if query is invalid. If False, return NA for the file name and continue processing.

True
**kwargs

Additional arguments to pass to the API

{}

Other Parameters:

Name Type Description
units str

SI or US

Returns:

Type Description
str | DataFrame

str | pd.DataFrame: the file name(s) of the downloaded data. File names are a hash of the query parameters. When force=False and the file already exists, the function will return the file name almost instantaneously without querying the API. If multiple variables, dates, or models are requested, returns a DataFrame with column file_name additional columns for vectorized queries.

salientsdk.downscale(loc, variables='temp,precip', date='-today', members=50, debias=False, frequency='daily', reference_clim='salient', version='-default', weights=None, length=366, destination='-default', force=False, session=None, apikey=None, verify=None, verbose=False, strict=True, **kwargs)

Temporal downscale of forecasts.

Convert temporally coarse probabilistic forecasts into granular daily ensembles. For more detail, see the api doc.

Parameters:

Name Type Description Default
loc Location

The location to query. If using a shapefile or location_file, may input a vector of file names which will trigger multiple calls to downscale. This is useful because downscale requires that all points in a file be from the same continent.

required
variables str | list[str]

The variables to query, separated by commas or as a list See the Data Fields documentation for a full list of available variables. Note that downscale natively supports a list of variables, so passing a list of variables here will not necessarily trigger downloading multiple files.

'temp,precip'
date str

The start date of the time series. If date is -today, use the current date.

'-today'
members int

The number of ensemble members to download

50
frequency str

The temporal resolution of the time series, daily (default) or hourly.

'daily'
reference_clim str

Reference period to calculate anomalies

'salient'
debias bool

If True, debias the data

False
version str

The model version of the Salient blend forecast.

'-default'
weights str

The variable that will be used to weight each grid point within a shapefile. Defaults to unweighted, can also weight by population.

None
length int

The number of days to downscale for. Defaults to 366.

366
destination str

The destination directory for downloaded files.

'-default'
force bool

If False (default), don't download the data if it already exists

False
session Session

The session object to use for the request

None
apikey str | None

The API key to use for the request. In most cases, this is not needed if a session is provided.

None
verify bool

If True (default), verify the SSL certificate

None
verbose bool

If True (default False) print status messages

False
strict bool

If True (default) error if query is invalid. If False, return NA for the file name and continue processing.

True
**kwargs

Additional arguments to pass to the API

{}

Other Parameters:

Name Type Description
gdd_base int

The base temperature for growing degree days

units str

US or SI

Returns:

Type Description
str | DataFrame

str | pd.DataFrame : If only one file was downloaded, return the name of the file. If multiple files were downloaded, return a table with column file_name and additional columns documenting the vectorized input arguments such as location_file.

salientsdk.data_timeseries(loc, variable='temp', field='anom', debias=False, start='1950-01-01', end='-today', format='nc', frequency='daily', weights=None, destination='-default', force=False, session=None, apikey=None, verify=None, verbose=False, **kwargs)

Get a historical time series of ERA5 data.

This function is a convenience wrapper to the Salient API.

Parameters:

Name Type Description Default
loc Location

The location to query. If using a shapefile or location_file, may input a vector of file names which will trigger multiple calls to data_timeseries.

required
variable str | list[str]

The variable to query, defaults to temp To request multiple variables, separate them with a comma temp,precip This will download one file per variable See the Data Fields documentation for a full list of available historical variables.

'temp'
field str

The field to query, defaults to "anom"

'anom'
debias bool

If True, debias the data to local observations. Disabled for shapefile locations. detail

False
start str

The start date of the time series

'1950-01-01'
end str

The end date of the time series

'-today'
format str

The format of the response

'nc'
frequency str

The frequency of the time series

'daily'
weights str

Aggregation mechanism if using a shapefile or location_file. Currently supported options are 'population' for a population-weighed mean and 'equal' for an arithmetic mean. Defaults to None, which will not perform any weighting or aggregation.

None
destination str

The directory to download the data to

'-default'
force bool

If False (default), don't download the data if it already exists

False
session Session

The session object to use for the request. If None (default) uses get_current_session().

None
apikey str | None

The API key to use for the request. In most cases, this is not needed if a session is provided.

None
verify bool

If True (default), verify the SSL certificate

None
verbose bool

If True (default False) print status messages

False
**kwargs

Additional arguments to pass to the API

{}

Other Parameters:

Name Type Description
units str

SI or US

Returns:

Type Description
str | DataFrame

str | pd.DataFrame: the file name of the downloaded data. File names are a hash of the query parameters. When force=False and the file already exists, the function will return the file name almost instantaneously without querying the API. If multiple variables are requested, returns a pd.DataFrame with columns file_name and additional columns documenting the vectorized input arguments such as location_file or variable

salientsdk.hindcast_summary(loc, metric='crps', reference='-auto', season='all', split_set='all', timescale='all', variable='temp', version='-default', interp_method='nearest', destination='-default', force=False, session=None, apikey=None, verify=None, verbose=False, **kwargs)

Get summary of accuracy metrics.

This function is a convenience wrapper to the Salient API.

Parameters:

Name Type Description Default
loc Location

The location to query

required
metric str

The accuracy metric to calculate. Defaults to "crps".

'crps'
interp_method str

The interpolation method to use. - nearest (default) selects the nearest native gridpoint - linear interpolates from the native grid to the input point

'nearest'
reference str

The reference dataset to compare against. Defaults to "-auto".

'-auto'
season str | list[str]

Meteorological season to consider. Defaults to "all". May also be a list of strings or a comma-separated string to vectorize the query. Also valid: DJF, MAM, JJA, SON.

'all'
split_set str

The date range over which to calculate scores. all (default) calculates scores back to 2000. test uses post-2015 data which was never used for model training.

'all'
timescale str

Forecast look-ahead. - sub-seasonal is 1-5 weeks. Will return a coordinate forecast_date_weekly and a data variable anom_weekly or vals_weekly. - seasonal is 1-3 months. Will return a coordinate forecast_date_monthly and a data variable anom_monthly or vals_monthly. - long-range is 1-4 quarters. Will return a coordinate forecast_date_quarterly and a data variable anom_quarterly or vals_quarterly. - all (default) will include sub-seasonal, seasonal, and long-range timescales

'all'
variable str | list[str]

The variable to query, defaults to temp To request multiple variables, separate them with a comma temp,precip or use a list. This will download one file per variable See the Data Fields documentation for a full list of available historical variables.

'temp'
version str | list[str]

The model version of the Salient blend forecast. To compare multiple versions, provide a list or comma-separated string. -default calls get_default_version().

'-default'
destination str

The destination directory for downloaded files. -default uses get_file_destination()

'-default'
force bool

If False (default), don't download the data if it already exists

False
session Session

The Session object to use for the request. Defaults to use get_current_session(), typically set during login().

None
apikey str | None

The API key to use for the request. In most cases, this is not needed if a session is provided.

None
verify bool

Verify the SSL certificate. Defaults to use get_verify_ssl(), typically set during login().

None
verbose bool

If True (default False) print status messages.

False
**kwargs

Additional arguments to pass to the API

{}

Other Parameters:

Name Type Description
units str

SI or US

Returns:

Name Type Description
str str

the file name of the downloaded data. File names are a hash of the query parameters. When force=False and the file already exists, the function will return the file name almost instantaneously without querying the API. If multiple files are requested, they will be concatenated into a single table.

salientsdk.geo(loc, variables='elevation', resolution=0.25, format='nc', destination='-default', force=False, session=None, apikey=None, verify=None, verbose=False, **kwargs)

Get static geo-data.

Parameters:

Name Type Description Default
loc Location

The location to query. If using a shapefile or location_file, may input a vector of file names which will trigger multiple calls to downscale. This is useful because downscale requires that all points in a file be from the same continent.

required
variables str

The variables to query, defaults to "elevation". Supports a comma separated list or list of variables.

'elevation'
resolution float

The spatial resolution of the data in degrees.

0.25
format str

The file format of the response. Defaults to nc which returns a multivariate NetCDF file. Also available: csv which returns a CSV file.

'nc'
destination str

The destination directory for downloaded files.

'-default'
force bool

If False (default), don't download the data if it already exists

False
session Session

The session object to use for the request

None
apikey str | None

The API key to use for the request. In most cases, this is not needed if a session is provided.

None
verify bool

If True (default), verify the SSL certificate

None
verbose bool

If True (default False) print status messages

False
**kwargs

Additional arguments to pass to the API

{}

Returns:

Type Description
str | list[str]

str | pd.DataFrame : If only one file was downloaded, return the name of the file. If multiple files were downloaded, return a table with column file_name and additional columns documenting the vectorized input arguments such as location_file.

salientsdk.login(username='username', password='password', apikey=None, verify=None, verbose=False)

Login to the Salient API.

This function is a local convenience wrapper around the Salient API login endpoint. It will use your credentials to create a persistent session you can use to execute API calls.

Parameters:

Name Type Description Default
username str

The username to login with

'username'
password str

The password to login with

'password'
apikey str | None

The API key to use instead of a login. If None (default) uses username and password to create a Session. If specified bypasses login and ignores username / password

None
verify bool

Whether to verify the SSL certificate. If None (default) will try True and then False, remembering the last successful setting and preserving it for future calls in get_verify_ssl().

None
verbose bool

Whether to print the response status

False

Returns:

Type Description
Session | None

Session | None: Session object to pass to other API calls. As a side effect, will also set the default session for use with get_current_session()

Geo-Inputs

salientsdk.Location

Define geographical parameters for an API query.

The Salient API defines location by a single latitude/longitude, multiple latitude/longitude pairs in a single location_file, or a polygon defined in a shapefile. This class manages these options.

__init__(lat=None, lon=None, location_file=None, shapefile=None, region=None)

Initialize a Location object.

Only one of the following 4 options should be used at a time: lat/lon, location_file, shapefile, or region.

Parameters:

Name Type Description Default
lat float

Latitude in degrees, -90 to 90.

None
lon float

Longitude in degrees, -180 to 180.

None
location_file str | list[str]

Path(s) to CSV file(s) with latitude and longitude columns.

None
shapefile str | list[str]

Path(s) to a shapefile(s) with a polygon defining the location.

None
region str | list[str]

Accepts continents, countries, or U.S. states (e.g. "usa") Only available for hindcast_summary()

None

load_location_file(destination='-default')

Load the location file(s) into a DataFrame.

Parameters:

Name Type Description Default
destination str

The directory where the file is located. Defaults to the default directory via get_file_destination.

'-default'

Returns:

Type Description
GeoDataFrame

gpd.GeoDataFrame: The location data in a DataFrame. If multiple files are loaded, the DataFrames will be concatenated into a single DataFrame with an additional column file_name that documents the source file.

location_file suports a variety of column names for latitude and longitude. This method standardizes them to lat and lon.

cluster(cluster_size=256, upload='changed', destination='-default', verbose=False, session=None, verify=None)

Cluster a vector of lat/lon points into separate location_files.

Groups locations into clusters of specified size and saves each cluster to a separate CSV file. Can optionally upload the resulting files.

Parameters:

Name Type Description Default
cluster_size

Target number of locations per cluster (default: 256)

256
upload Literal['changed', 'all', 'none']

Upload strategy for cluster files: * changed - only upload modified files (default) * all - upload all cluster files, even if unchanged * none - skip uploading

'changed'
destination str

Generate location files to this local directory.

'-default'
verbose bool

Whether to print progress information

False
session Session | None

Optional session object to use, if uploding files

None
verify bool

Verify the SSL certificate, if uploading files

None

Returns:

Name Type Description
Location Location

A new Location object with the location_file field as a vector of all generated files.

Adds instance variable any_changed if any written files did not match existing ones. Useful for setting force on downstream processes.

_as_geoframe(geo) staticmethod

Normalize column names on a DataFrame and convert to a GeoDataFrame.

Regardless of the column names in the input DataFrame, this method will return a GeoDataFrame with columns lat,lon, and name

plot_locations(title=None, weight=None, pad=1.0, names=True)

Show location points on a map.

Parameters:

Name Type Description Default
title str

The title of the plot.

None
weight str

The column name in the location file to use to weight the points.

None
pad float

Adds extent to the lat/lon bounding boxon the map.

1.0
names bool

Plot location string names

True

salientsdk.upload_file(file, verbose=False, session=None, verify=None)

Upload location_file or shapefile.

An interface to to the Salient upload_file API endpoint.

Parameters:

Name Type Description Default
file str | list[str]

Single file path or list of file paths to upload

required
verbose bool

Whether to print progress information

False
session Session | None

Optional session object, will create new session if None

None
verify bool

If True (default), verify the SSL certificate

None

Returns:

Type Description
None

File ID(s) returned by the API

Raises:

Type Description
FileNotFoundError

If any file doesn't exist

HTTPError

If upload fails

RateLimitException

If API rate limits are exceeded

salientsdk.upload_bounding_box(north, south, east, west, geoname, destination='-default', force=False, verbose=False, session=None)

Upload a bounding box.

Create and upload a GeoJSON shapefile with a rectangular bounding box for later use with the shapefile location argument.

Parameters:

Name Type Description Default
north float

Northern extent decimal latitude

required
south float

Southern extent decimal latitude

required
east float

Eastern extent decimal longitude

required
west float

Western extent decimal longitude

required
geoname str

Name of the GeoJSON file and object to create

required
destination str

The destination directory for the generated file

'-default'
force bool

If the file already exists, don't upload it

False
verbose bool

Whether to print status messages

False
session Session

The session object to use for the request

None

Returns:

Name Type Description
str str

File name of the GeoJSON file

salientsdk.upload_shapefile(coords, geoname, destination='-default', force=False, verbose=False, session=None)

Upload a custom shapefile defined by a a list of lat/lon pairs.

This will often be used with Location(shapefile...)

Parameters:

Name Type Description Default
coords list[tuple]

List of (longitude, latitude) pairs defining the polygon.

required
geoname str

Name of the GeoJSON file and object to create.

required
destination str

The destination directory for the generated file.

'-default'
force bool

If True, overwrite the existing file if it exists.

False
verbose bool

Whether to print status messages.

False
session Session

The session object to use for the request.

None

Returns:

Name Type Description
str

File name of the GeoJSON file.

salientsdk.upload_location_file(lats, lons, names, geoname, destination='-default', force=False, verbose=False, session=None, **kwargs)

Upload a vector of locations.

Create and upload a CSV file with a list of locations for later use with the location_file location argument.

Parameters:

Name Type Description Default
lats list[float] | Series

List of decimal latitudes

required
lons list[float] | Series

List of decimal longitudes

required
names list[str] | Series

List of names for the locations

required
geoname str

Name of the CSV file and object to create

required
destination str

The destination directory for the generated file

'-default'
force bool

When False, if the file already exists don't upload it

False
verbose bool

If True, print status messages

False
session Session

The session object to use for the request

None
**kwargs

Additional columns to include in the CSV file

{}

Returns:

Name Type Description
str str

File name of the CSV file

salientsdk.user_files(destination='-default', session=None, verify=None, verbose=False)

List the location and shape files uploaded by the user.

Parameters:

Name Type Description Default
destination str

The destination directory for the resulting JSON file

'-default'
session Session

The session object to use for the request

None
verify bool

Whether to verify the SSL certificate. Defaults to use the value returned by get_verify_ssl()

None
verbose bool

If True, print the full contents of the file.

False

Returns:

Name Type Description
str str

the location of the JSON file containing top-level entries coordinates (for location_file inputs) and shapefiles.

salientsdk.merge_location_data(ds, loc_file, as_data_vars=True)

Merge additional data columns from a location_file into a dataset.

Will add any additional columns from loc_file to ds.

Parameters:

Name Type Description Default
ds Dataset | str

A Dataset with a vector location coordinate, typically resulting from requesting a location_file

required
loc_file str | Location

Path to a CSV file containing location data or a Location object with a location_file attribute.

required
as_data_vars bool

If True (default), adds columns as data variables. If False, adds them as coordinates.

True

Returns:

Type Description
Dataset

xr.Dataset: A new Dataset with the additional columns from loc_file along the location coordinate.

Utilities / Data

salientsdk.load_multihistory(files, fields=['vals'])

Load multiple .nc history files and merge them into a single dataset.

Parameters:

Name Type Description Default
files DataFramme

Table of the type returned by data_timeseries when multiple variables, location_files or shapefiles are requested e.g. data_timeseries(..., variable = "temp,precip")

required
fields list[str]

List of fields to extract from the history files. Useful if when calling data_timeseries(..., field = "all")

['vals']

Returns:

Type Description
Dataset

xr.Dataset: The merged dataset, where each field and variable is renamed to <variable>_<field> or simply variable if field = "vals". This will cause the format of a multi-variable file to match the data variable names of downscale, which natively supports multi-variable queries.

salientsdk.transpose_hindcast_summary(scores, min_score=0.0, weight_weeks=1.0, weight_months=0.5, weight_quarters=0.25)

Transpose hindcast_summary long to wide, preserving groups.

Transposes the hindcast summary data from a long format to a wide format where each 'Lead' row becomes a column. Adds a column mean with a weighted average of the scores.

Parameters:

Name Type Description Default
scores str | DataFrame

The hindcast scores data. This can be either a file path as a string or a pre-loaded DataFrame of the type returned by hindcast_summary()

required
min_score float

Render any scores below this threshold as NA

0.0
weight_weeks float

Weight for weeks 3-5, defaults to 1.0

1.0
weight_months float

Weight for months 2-3, defaults to 0.5

0.5
weight_quarters float

Weight for quarters 2-4, defaults to 0.25

0.25

Returns:

Type Description
DataFrame

pd.DataFrame: The transposed DataFrame with 'Lead' categories as columns.

Utilities / Wind

salientsdk.wind.calc_wind_power_all(met, wspd='wspd', wspd100='wspd100', temp='temp', turbine_model='turbine_model', hub_height='hub_height', elevation='elevation')

Calculate wind power from meteorological data.

This is a convenience function that shears wind to hub height, density-corrects it, then calculates wind power. It operates on a single dataset as a source of the necessary data.

The arguments wspd, wspd100, temp, turbine_model, hub_height, and elevation can be either strings or xr.DataArray objects. If they are strings, they are assumed to be keys in the met dataset.

Parameters:

Name Type Description Default
met Dataset

Meteorological data.

required
wspd str | DataArray

Wind speed at hub height.

'wspd'
wspd100 str | DataArray

Wind speed at 100m.

'wspd100'
temp str | DataArray

Temperature

'temp'
turbine_model str | DataArray

Turbine model.

'turbine_model'
hub_height str | DataArray

Hub height (m).

'hub_height'
elevation str | DataArray

Elevation above sea level (m).

'elevation'

Returns:

Type Description
Dataset

xr.Dataset: with fields wspdhh for density-corrected wind speed at hub height power for generated wind power in MW.

salientsdk.wind.calc_wind_power(wind_speed, turbine_model='default', keep_dims=None)

Calculate power from power curve & density-corrected hub-height wind.

Parameters:

Name Type Description Default
wind_speed DataArray

Wind speed at hub height.

required
turbine_model str | DataArray

Turbine model to use. If a string, call get_power_curve(turbine_model) If a DataArray, iterate over locations to apply a different power curve at each location.

'default'
keep_dims set | None

Set of coordinates to preserve in the output. If None (default) uses wind_speed.dims.

None

Returns:

Type Description
DataArray

xr.DataArray: Wind power in MW.

salientsdk.wind.correct_wind_density(wspd, dens=1.225, temp=286.0, elev=0.0)

Correct wind speed for air density.

Values dens, temp, and elev can be scalar numbers or DataArrays with coordinates compatible with wspd.

Parameters:

Name Type Description Default
wspd DataArray

Wind speed at hub height.

required
dens DataArray | float

Target air density to correct to (kg/m^3). Corrects to sea level air density by default.

1.225
temp DataArray | float

Temperature (degrees C)

286.0
elev DataArray | float

Elevation above sea level (m). Corrects to sea level by default.

0.0

Returns:

Type Description
DataArray

xr.DataArray: Wind speed corrected for air density.

salientsdk.wind.shear_wind(wnd_hi, wnd_lo, hgt_hh, hgt_hi=100.0, hgt_lo=10.0)

Shear wind speed to hub height.

Uses the Power Law to shear wind speed from two heights to a hub height. Will interpolate or extrapolate, as needed.

Parameters:

Name Type Description Default
wnd_hi DataArray

Wind speed at height hgt_hi.

required
wnd_lo DataArray

Wind speed at height hgt_lo.

required
hgt_hh DataArray

Hub height above ground level

required
hgt_hi float

Height above ground level of wnd_hi.

100.0
hgt_lo float

Height above ground level of wnd_lo.

10.0

Returns:

Type Description
DataArray

xr.DataArray: Wind speed at hub height, same dimensions as wnd_hi.

salientsdk.wind.get_power_curve(turbine_model='default')

Get a power curve for a specific turbine model.

Parameters:

Name Type Description Default
turbine_model None | str | list[str] | DataArray

Turbine model to select. If None, return all available models. If a string, return the model with that name. If string is default, chooses a popular turbine model. If a list of strings or a string DataArray, will load all turbines in the list.

'default'
Return

xr.DataArray: Power curve for the selected turbine model(s). Coordinate wind_speed is the wind speed at hub height.

Utilities / Solar

salientsdk.solar.data_timeseries_solar(loc, start='1950-01-01', end='-today', variable=SOLAR_VARIABLES, debias=False, destination='-default', force=False, session=None, apikey=None, verify=None, verbose=False)

Get a historical time series of pvlib-compatible solar weather inputs.

A convenience wrapper around data_timeseries() to get solar weather data. Generates a past weather dataset suitable to pass to run_pvlib_dataset().

Parameters:

Name Type Description Default
loc Location

The location to query.

required
start str

The start date of the time series

'1950-01-01'
end str

The end date of the time series

'-today'
variable list[str]

The variables to download. Defaults to ["temp", "wspd", "tsi", "dhi", "dni"] which are the inputs needed for run_pvlib_dataset().

SOLAR_VARIABLES
debias bool

If True, debias the data to local observations. Defaults to False since debiasing does not currently support solar components like tsi, dhi, and dni.

False
destination str

The directory to download the data to

'-default'
force bool

If False (default), don't download the data if it already exists

False
session Session

The session object to use for the request. If None (default) uses get_current_session().

None
apikey str | None

The API key to use for the request. In most cases, this is not needed if a session is provided.

None
verify bool

If True (default), verify the SSL certificate

None
verbose bool

If True (default False) print status messages and check for NaN.

False

Returns:

Type Description
Dataset

xr.Dataset: An hourly dataset with the following variables: - temp: temperature (C) - wspd: wind speed (m/s) - tsi: total solar irradiance, aka Global Horizontal Irradiance (W/m^2) - dhi: diffuse horizontal irradiance (W/m^2) - dni: direct normal irradiance (W/m^2) - elevation: elevation (m)

salientsdk.solar.downscale_solar(loc, date='-today', members=50, variables=SOLAR_VARIABLES, destination='-default', force=False, session=None, apikey=None, verify=None, verbose=False, **kwargs)

Get a forecast time series of pvlib-compatible solar weather inputs.

A convenience wrapper around downscale() to get solar weather data. Generates a future weather dataset suitable to pass to run_pvlib_dataset().

Parameters:

Name Type Description Default
loc Location

The location to query.

required
date str

The start date of the time series. If date is -today, use the current date.

'-today'
members int

The number of ensemble members to download

50
variables list[str]

The variables to download. Defaults to ["temp", "wspd", "tsi", "dhi", "dni"] which are the inputs needed for run_pvlib_dataset().

SOLAR_VARIABLES
destination str

The directory to download the data to

'-default'
force bool

If False (default), don't download the data if it already exists

False
session Session

The session object to use for the request. If None (default) uses get_current_session().

None
apikey str | None

The API key to use for the request. In most cases, this is not needed if a session is provided.

None
verify bool

If True (default), verify the SSL certificate

None
verbose bool

If True (default False) print status messages and check for NaN

False
**kwargs

Additional arguments to pass to downscale()

{}

Other Parameters:

Name Type Description
reference_clim str

Reference period to calculate anomalies.

version str

The model version of the Salient blend forecast.

debias bool

Defaults to False, note that tsi, dhi, and dni are not debiased.

Returns:

Type Description
Dataset

xr.Dataset: An hourly dataset with the following variables: - temp: temperature (C) - wspd: wind speed (m/s) - tsi: total solar irradiance, aka Global Horizontal Irradiance (W/m^2) - dhi: diffuse horizontal irradiance (W/m^2) - dni: direct normal irradiance (W/m^2) - elevation: elevation (m)

salientsdk.solar.run_pvlib_dataset(weather, timedim='time', model_chain=None, nan_check=0.01)

Execute pvlib multiple times on a weather-inputs dataset.

Parameters:

Name Type Description Default
weather Dataset | str

Solar meteorological inputs, of the form returned by data_timeseries_solar() May also be the filename to a valid dataset.

required
timedim str

The name of the time dimension

'time'
model_chain ModelChain

The model chain(s) to use. If None, calls dataset_to_modelchain(weather).

None
nan_check float

issue a warning if any month in the dataset contains more than this ratio of NaNs. Suppress with None.

0.01

Returns:

Type Description
Dataset

xr.Dataset: A dataset with matching coordinates to ds containing data * ac = Alternating Current power * dc = Direct Current power * effective_irradiance = Effective Irradiance * poa_direct = Plane of Array Direct * poa_sky_diffuse = Plane of Array Sky Diffuse * poa_ground_diffuse = Plane of Array Ground Diffuse

poa_global = poa_direct + poa+diffuse poa_diffuse = poa_sky_diffuse + poa_ground_diffuse

Utilities / Hydrological

salientsdk.hydro.calc_swe(met, timedim='forecast_day')

Call the snow17 model for each location and ensemble member.

Acknowledgements: Based on Anderson (2006) and Mark Raleigh's matlab code.

Primary Citations: 1. Anderson, E. A. (1973), National Weather Service River Forecast System Snow Accumulation and Ablation Model, NOAA Tech. Memo. NWS HYDro-17, 217 pp., U.S. Dep. of Commer., Silver Spring, Md. 2. Anderson, E. A. (1976), A point energy and mass balance model of a snow cover, NOAA Tech. Rep. 19, 150 pp., U.S. Dep. of Commer., Silver Spring, Md.

Written by Joe Hamman April, 2013

Parameters:

Name Type Description Default
met Dataset

a dataset containing timedim, precip, temp, & lat. If met contains a field elevation it will be used.

required
timedim str

the name of the time dimension in met The time step in timedim can be hourly or daily.

'forecast_day'

Returns:

Type Description
DataArray

xr.DataArray: a dataset containing snow water equivalent (mm)

Utilities / Validation

salientsdk.skill.crps(observations, forecasts, qnt_dim='quantiles')

Calculate Continuous Ranked Probability Score.

CRPS is used to calculate the skill of a probabilistic forecast. CRPS is defined as 2 times the integral of the quantile loss over the distribution. Zero CRPS indicates a perfect forecast.

Parameters:

Name Type Description Default
observations Dataset | DataArray | str

Dataset of observed values, aka "truth", or a nc filename. observations should usually have the same coordinates as forecasts. If observations has a daily timescale to match a weekly, monthly, or quarterly timescale for forecasts.

required
forecasts Dataset | DataArray | str | list[str] | DataFrame

Dataset of forecasted values. May also be: - a file reference to a nc file - a vector of file references to nc files - a DataFrame with a file_name column

required
qnt_dim str

Name of the quantile dimension in the forecast array. Defaults to quantiles, which is the dimension name returned by forecast_timeseries.

'quantiles'

Returns:

Type Description
Dataset

xr.Dataset: The CRPS of the forecasts quantiles vs. the observations. If forecasts is a vector of multiple forecast_date_<timescale>s, will also return a data variable crps_<timescale>_all denominated by forecast_date to enable subsetting or trend analysis.

salientsdk.skill.align_daily_obs_to_lead(observations, forecasts, timescale='all')

Convert daily observations to match forecasts denominated by a coarse lead time.

Parameters:

Name Type Description Default
observations str | Dataset | DataArray

Daily observed values with coordinate time. If str load NetCDF.

required
forecasts str | Dataset | DataArray

The forecasted values with coordinate lead_<timescale> and forecast_period_<timescale>. If str, load NetCDF.

required
timescale str | Iterable[str]

The forecast period of the forecast, corresponding to data variables lead_<timescale> and forecast_period_<timescale>. Will typically be weekly, monthly, or quarterly. If all (default), will work across each of the possible timescales.

'all'

Returns:

Type Description
Dataset | DataArray

xr.Dataset | xr.DataArray: An aggregated version of observations with coordinate(s) lead_<timescale> instead of time.

Utilities / Observed Data

:: salientsdk.observed.make_observed_ds

Constants and Variables

salientsdk.get_model_version(version='-default')

Get the current default model version.

Parameters:

Name Type Description Default
version str

If -default, return the current model version. Otherwise, return the value of version.

'-default'

Returns:

Name Type Description
str str

The current model version

salientsdk.set_model_version(version)

Set the default model version.

Parameters:

Name Type Description Default
version str

The model version to set

required

salientsdk.get_current_session()

Get the current session.

All calls to the Salient API have a session argument that defaults to None. If session is not passed to the function, the api call will use the output of this function.

Returns:

Type Description
Session

requests.Session: The current session if one was set via login() or set_current_session(), or a temporary session for use with apikey.

salientsdk.set_current_session(session)

Set the current session.

This function is called internally as a side effect of login(). In most cases, users will never need to call it explicitly.

Parameters:

Name Type Description Default
session Session | None

The session that will be returned by get_current_session(). Set None to clear the session.

required

salientsdk.get_file_destination(destination='-default', make=True)

Get the default destination for downloaded files.

Parameters:

Name Type Description Default
destination str

If -default, return the destination set by set_file_destination. Otherwise, return the value of destination.

'-default'
make bool

If True, create the directory if it doesn't exist.

True

Returns:

Name Type Description
str str

The destination for downloaded files.

salientsdk.set_file_destination(destination='salient_data', force=False)

Set the default destination for downloaded files.

Parameters:

Name Type Description Default
destination str

The default destination for downloaded files.

'salient_data'
force bool

If True (default False), clear the cached contents of the destination directory. This will force all subsequent downloads to re-download fresh versions of the files.

False

Returns:

Name Type Description
str str

The destination that was set by the function.

Copyright 2024 Salient Predictions